TERRAMETRA

GRAPHS and FUNCTIONS RECTANGULAR COORDINTES

Terrametra Resources

Lynn Patten

RECTANGULAR COORDINATES

- Ordered Pairs
- The Rectangular Coordinate System
- The Distance Formula
- The Midpoint Formula
- Equations in Two Variables

ORDERED PAIRS

ORDERED PAIRS

An ordered pair consists of two components, written inside parentheses.

The first component is the independent component.
The second component is the dependent component.

Ordered Pairs

1(a) Use the table to write ordered pairs to express the relationship between x and y.

Solution:
First row: ($\mathrm{A}, 27$)
Third row: ($\mathrm{C}, 1$)
Fifth row: $\quad(E,-1)$
Last row: $\quad(\mathrm{G},-9)$

\mathbf{X}	\mathbf{Y}
\mathbf{A}	27
\mathbf{B}	8
\mathbf{C}	1
\mathbf{D}	0
\mathbf{E}	-1
\mathbf{F}	-4
\mathbf{G}	-9

TERRAMETRA

The Rectangular Coordinate System

Terrametra Resources

Lynn Patten

The Rectangular Coordinate System

PYTHAGOREAN THEOREM

PYTHAGOREAN THEOREM

Three points form a right triangle, if the lengths of the sides $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} satisfy

$$
a^{2}+b^{2}=c^{2}
$$

where \boldsymbol{c} (the longest side) is the hypotenuse, and \boldsymbol{a} and \boldsymbol{b} are the legs of the triangle.

DISTANCE FORMULA

Using the coordinates of ordered pairs, we can find the distance between any two points in a plane.

The horizontal side of the triangle has length ...
$d(P, Q)=|8-(-4)|=12$
The vertical side of the triangle has length ...
$d(P, Q)=|3-(-2)|=5$

DISTANCE FORMULA

Using the coordinates of ordered pairs, we can find the distance between any two points in a plane.

By the Pythagorean theorem, the length of the remaining side of the triangle is ...
$\sqrt{12^{2}+5^{2}}=\sqrt{144+25}=\sqrt{169}=13$
... so the distance between
$(-4,3)$ and $(8,-2)$ is 13.

DISTANCE FORMULA

To obtain a general formula for the distance between two points in a coordinate plane, let $P\left(x_{1}, y_{1}\right)$ and $R\left(x_{2}, y_{2}\right)$ be any two distinct points in a plane.

Complete a triangle by locating point Q with coordinates (x_{2}, y_{1}).
The Pythagorean theorem gives the distance between P and R...

$$
d(P, R)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

DISTANCE FORMULA

DISTANCE FORMULA

Suppose that $P\left(x_{1}, y_{1}\right)$ and $R\left(x_{2}, y_{2}\right)$ are two points in a coordinate plane.

The distance between P and R, written $d(P, R)$, is given by the following formula ...

$$
d(P, R)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example 2
TERRAMETRA

Using the Distance Formula

2(a) Find the distance between $P(-8,4)$ and $Q(3,-2)$.

Solution:

$$
\begin{aligned}
d(P, Q) & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{[3-(-8)]^{2}+(-2-4)^{2}} \\
& =\sqrt{11^{2}+(-6)^{2}} \\
& =\sqrt{121+36} \\
& =\sqrt{157}
\end{aligned}
$$

Example 3

Using the Distance Formula

3(a) Determine whether the points $M(-2,5), N(12,3)$, and $Q(10,-11)$ are the vertices of a right triangle.

Solution:

$$
\begin{aligned}
d(M, N) & =\sqrt{[12-(-2)]^{2}+(3-5)^{2}} \\
& =\sqrt{196+4}=\sqrt{200} \\
d(M, Q) & =\sqrt{[10-(-2)]^{2}+(-11-5)^{2}} \\
& =\sqrt{144+256}=\sqrt{400}=20 \\
d(N, Q) & =\sqrt{(10-12)^{2}+(-11-3)^{2}} \\
& =\sqrt{4+196}=\sqrt{200}
\end{aligned}
$$

Example 3

Using the Distance Formula

3(a) Determine whether the points $M(-2,5), N(12,3)$, and $Q(10,-11)$ are the vertices of a right triangle?

Solution (cont'd):

The longest side, of length 20 units, is chosen as the possible hypotenuse.

Since ...
$(\sqrt{200})^{2}+(\sqrt{200})^{2}=400=20^{2}$
... is true,
the triangle is a right triangle with the hypotenuse joining M and Q.

COLINEAR POINTS

COLINEAR POINTS

We can tell if three points are colinear, that is, if they lie on a straight line, using a similar procedure.

Three points are colinear if the sum of the distances between two pairs of points is equal to the distance between the remaining pair of points.

TERRAMETRA

Example 4

Using the Distance Formula

4(a) Determine whether the points $P(-1,5), Q(2,-4)$, and $R(4,-10)$ are colinear.

Solution:

$$
\begin{aligned}
d(P, Q) & =\sqrt{(-1-2)^{2}+[5-(-4)]^{2}}=\sqrt{9+81}=\sqrt{90} \\
& =3 \sqrt{10} \\
d(Q, R) & =\sqrt{(2-4)^{2}+[-4-(-10)]^{2}}=\sqrt{4+36}=\sqrt{40} \\
& =2 \sqrt{10} \\
d(P, R) & =\sqrt{(-1-4)^{2}+[5-(-10)]^{2}}=\sqrt{25+225}=\sqrt{250} \\
& =5 \sqrt{10}
\end{aligned}
$$

MIDPOINT FORMULA

MIDPOINT FORMULA

The coordinates of the midpoint $M(x, y)$
of the line segment with endpoints $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ are given by the following ...

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Example 5 Using the Midpoint Formula

5(a) Use the midpoint formula to find the coordinates of the midpoint M of the line segment with endpoints $(8,-4)$ and $(-6,1)$.

Solution:

$$
\left(\frac{8+(-6)}{2}, \frac{-4+1}{2}\right)=\left(1,-\frac{3}{2}\right) \quad \begin{aligned}
& \text { Substitute in the } \\
& \text { midpoint formula }
\end{aligned}
$$

TERRAMETRA
Example 5

Using the Midpoint Formula

5(b) Use the midpoint formula to find the coordinates of the other endpoint Q of a segment with one endpoint $P(-6,12)$ and midpoint $M(8,-2)$.

Solution:
Let (x, y) represent the coordinates of Q.
Use the midpoint formula twice.

$$
y \text {-value of } P \text { y-value of } M
$$

Substitute carefully.

$$
\begin{array}{r}
x-6=16 \\
x=22
\end{array}
$$

$$
y+12=-4
$$

$$
y=-16
$$

The coordinates of endpoint Q are $(22,-16)$.

Using the Midpoint Formula

6(a) Find at least three ordered pairs that are solutions of the equation:

$$
y=4 x-1
$$

Solution:
Choose any real number for x or y and substitute in the equation to get the corresponding value of the other variable.

$$
\begin{array}{lrll}
y=4 x-1 & & y=4 x-1 & \\
y=4(-2)-1 \text { Let } x=-2 . & 3=4 x-1 & \text { Let } y=3 \\
y=-8-1 & \text { Multiply. } & 4=4 x & \text { Add } 1 . \\
y=-9 & \text { Simplify. } & 1=x & \text { Divide by } 4 .
\end{array}
$$

This gives the ordered pairs $(-2,-9)$ and $(1,3)$. Verify that the ordered pair $(0,-1)$ is also a solution.

Finding Ordered-Pair Solutions of Equations

6(b) Find at least three ordered pairs that are solutions of the equation: $\quad x=\sqrt{y-1}$

Solution:

$$
\begin{array}{ll}
1=\sqrt{y-1} & \text { Let } x=1 . \\
1=y-1 & \text { Square each side. } \\
2=y & \text { Add } 1 .
\end{array}
$$

One ordered pair is (1, 2).
Verify that the ordered pairs $(0,1)$ and $(2,5)$ are also solutions of the equation.

Example 6

Finding Ordered-Pair Solutions of Equations

6(c) Find at least three ordered pairs that are solutions of the equation:

$$
y=x^{2}-4
$$

Solution:

A table provides an organized method for determining ordered pairs.

\mathbf{X}	\mathbf{Y}
-2	0
-1	-3
0	-4
1	-3
2	0

Five ordered pairs are ...
$(-2,0),(-1,-3),(0,-4),(1,-3)$, and $(2,0)$.

Graphing an Equation by Point Plotting

Graphing an Equation by Point Plotting

Step 1 Find the intercepts.
Step 2 Find as many additional ordered pairs as needed.
Step 3 Plot the ordered pairs from Steps 1 and 2.
Step 4 Join the points from Step 3 with a smooth line or curve.

Example 7

Graphing Equations

7(a) Graph the equation: $\quad y=4 x-1$

Solution:

Step 1 Let $y=0$ to find the x-intercept, and Let $x=0$ to find the y-intercept.

$$
\begin{aligned}
& y=4 x-1 \\
& 0=4 x-1 \\
& 1=4 x \\
& \frac{1}{4}=x
\end{aligned}
$$

$$
\begin{aligned}
& y=4 x-1 \\
& y=4(0)-1 \\
& y=0-1 \\
& y=-1
\end{aligned}
$$

The intercepts are $\left(\frac{1}{4}, 0\right)$ and $(0,-1)$.

Example 7

Graphing Equations

7(a) Graph the equation: $\quad y=4 x-1$

Solution (cont'd):

Step 2 Find some other ordered pairs. (also found in Example 5a).

$$
\begin{aligned}
& y=4 x-1 \\
& y=4(-2)-1 \text { Let } x=-2 . \\
& y=-8-1 \quad \text { Multiply. } \\
& y=-9 \quad \text { Simplify. }
\end{aligned}
$$

$$
y=4 x-1
$$

$$
3=4 x-1 \quad \text { Let } y=3
$$

$$
4=4 x \quad \text { Add } 1
$$

$$
1=x \quad \text { Divide by } 4 .
$$

This gives the ordered pairs $(-2,-9)$ and $(1,3)$.

Example 7

Graphing Equations

7(a) Graph the equation: $\quad y=4 x-1$
Solution (cont'd):
Step 3 Plot the four ordered pairs from Steps 1 and 2. (also found in Example 5a).

Step 4 Join the points with a straight line.

Example 7

Graphing Equations

7(b) Graph the equation:

Solution:

Plot the ordered pairs found in Example 5b, and then join the points with a smooth curve. To confirm the direction the curve will take as x increases, find another solution, $(3,10)$.

$$
x=\sqrt{y-1}
$$

Example 7

Graphing Equations

7(c) Graph the equation: $y=x^{2}-4$

Solution:

Plot the ordered pairs and join them with a smooth curve.

\mathbf{X}	\mathbf{Y}
-2	0
-1	-3
0	-4
1	-3
2	0

This curve is called a parabola.

